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Abstract—This paper gives closed form expressions for the displacement and stress fields in a
transversely isotropic half space when the surface is loaded in shear by a sliding circular flat punch
in either an upright or inclined position. The shear traction on the surface is taken as a friction
coefficient multiplied by the frictionless contact pressure. The solution derived here for shear loading
is generally approximate since the interaction between the normal and shear loading is ignored and
the relative displacements do not necessarily align to the direction of shear traction. However, it is
shown that the interaction between the surface stresses vanishes for a particular yalue of the elastic
constants and it is also shown that in some instances the tangential displacmey(svzlo align with the
shear traction thus yielding an exact solution. It is furthermore shown that the solution for a sliding
flat upright indenter is an exact solution to the problem of a circular external crack in an infinite
transversely isotropic body subjected to uniform tangential displacement loading at infinity. Numeri-
cal results for the subsurface stress fields are given to illustrate the effects of sliding and transverse
isotropy.

1. INTRODUCTION

Problems concerning the contact between elastic bodies have been of great interest to
researchers over the past century. As a special case, the class of three-dimensional rigid
punch problems in contact with an elastic half space have been the topic of a considerable
number of investigations. A good review of this literature can be found in Gladwell (1980).
Although the list of references on this subject is extensive, most of this previous work has
dealt with calculating quantities on the surface only and most have considered only isotropic
materials. Very few investigators have evaluated closed form expressions for the elastic field
and even less have considered transversely isotropic materials. The indenter geometry may
take many different forms but attention here is focused on the problem of a rigid right
circular cylinder pressed into a transversely isotropic elastic half space in either an upright
or inclined position. The other classic cases of conical and spherical (Hertzian) indentation
have been considered previously by the author (Hanson 1992a, b, 1993a, b) and will not
be discussed presently.

Sneddon (1946) was the first investigator to give explicit expressions for the elastic
field resulting from frictionless indentation of an isotropic half space by a flat ended circular
cylinder. Muki (1960) considered the nonaxisymmetric case when the indenter is acted upon
by moments, again for isotropy. Apparently Elliot (1949) was the first to give the elastic
field resulting from frictionless indentation of a transversely isotropic half space by a rigid
right circular cylinder in an upright position. The displacements and stresses were given in
terms of inverse Hankel transform integrals which he noted could be evaluated by methods
given in Watson (1980). Very recently, Fabrikant (1988) has given explicit closed form
expressions for the elastic field for this problem. In addition, he also gave the elastic field
for the nonaxisymmetric case when the indenter is acted upon by moments and the net
normal force is zero. The elastic field for a circular flat indenter under nonconcentric normal
loading can be simply obtained by superposing these two separate solutions.

All previous analysis has considered the frictionless case only. In some circumstances
the indenter may also be subjected to tangential loading thus possibly causing the indenter
to slide on the surface. Shear loading of three-dimensional indenters is a very difficult
problem and has not been addressed previously in the literature except for the well known
Hertzian contact analysis and the conical indentation solution noted earlier. The present
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study is an attempt to consider this possible loading condition for both the flat and the
tilted indenter. It is assumed in this analysis that the indenter slides across the surface and
a Coulomb friction law is used. The shear traction is thus taken as a coefficient of friction
multiplied by the contact pressure. It is important to note two key factors which render this
solution approximate. First, the effect of shear loading will alter the surface profile and hence
the contact pressure will differ to some extent from the frictionless pressure distribution used
here. Secondly, the shear stress will not align to oppose relative motion. This results in
points on the contact surface having tangential displacements in two directions when the
shear traction is only unidirectional. It is important to point out that no exact closed form
solution for tangential loading of rigid indentation of an elastic half space has ever been
presented in the literature. The present solution, although containing approximations, is
the first closed form solution to this problem for right circular cylindrical indentation.

It will be shown that for the sliding upright indenter, the tangential displacements are
constant inside the loaded region and always align with the direction of shear traction for
any transversely isotropic material. This was shown to be true previously by Mindlin (1949)
for isotropy and Fabrikant (1989) for transverse isotropy. Furthermore, for a particular
value of the elastic constants (when the parameter « = 0) the shear traction will not affect
the contact pressure. In this case the presently derived solution is an exact one. For the
sliding tilted indenter, the tangential displacements do not generally align with the shear
traction unless a relation between the elastic constants is zero (G, =0 where G, is a
parameter). As with the upright indenter, the shear loading will not affect the contact
pressure if a = 0. If these two relations are satisfied the present solution for the tilted
indenter is again exact under sliding conditions.

One of the solutions derived here is also pertinent to the area of fracture mechanics.
It will be shown that for the flat upright indenter, the tangential sliding traction on the
surface produces a tangential surface displacement which is constant inside the loaded
region. Since all traction vanishes outside the circular contact area, this problem is shown
to be equivalent to a circular external crack in an infinite transversely isotropic body loaded
by a uniform remote tangential displacement parallel to the crack plane. The present results
provide the elastic field in closed form for this problem. The closed form solution to this
problem for isotropy has been given by Westmann (1965).

2. POTENTIAL FUNCTIONS AND GREEN’S FUNCTIONS FOR TRANSVERSE ISOTROPY

Consider a transversely isotropic elastic half space z > 0 where the surface z = 0 is
parallel to the plane of isotropy, Fig. 1. The notation of Fabrikant (1988, 1989) will be
adopted. The displacements are denoted as , v and w in the x, y and z directions and 4,,,
Ays, Ass, Ays and A are the five elastic constants. The relations giving the displacements

Fig. 1. Geometry and coordinate system for indentation.
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and stresses in terms of the three potentials F;, F, and F; can be found in the above
references. Following previous research, the complex displacement u° = u+ v will be used
along with the stress combinations ¢, = 0,,+0,,, 6, = 0, —0,,+2it,, and T, = 1,,+i7,,.

To obtain the solution for a distributed loading, integration of the point force solutions
will be used. For this purpose cylindrical coordinates p, ¢, z are adopted. The point force
is applied on the surface z = 0 at the point p,, ¢, with components T}, T, in the positive x
and y directions, respectively.

The potential functions for the point shear loading are given as (see Fabrikant, 1989;
Hanson, 1992a, b)

Hy, 72

Fi(p.6.7:00,90) = o055 7 (TR+ TAYX(2), M
] Hy, 7 .

FZ(p= ¢az,po,¢a) = (Mmz__l) ’E(TA+TA)X(22)’ (2)

Fy(p.$,2:p080) = i 3~ (TR=TA(2), 3

where T = T, +iT,, an overbar indicates complex conjugation, the function y(z,) is:
x2@) = @ In [Re+2z] - Ry), k=123, C)

and

R} = p*+p2—2pp, cos (p— ) +23, z = f— k=123 )
k

The constant H is defined as:

H= (yi+72)4n

—27I(A11A33—A%3)' ©

3. ELASTIC FIELD FOR SLIDING FLAT INDENTATION

The problem under consideration is shown in Fig. 1. A circular flat indenter is pressed
into an elastic half space by a force P and the moments M, and M, are zero. The indenter
displacement is denoted as w and the contact circle has a radius of p = a. The elastic field
is obtained by first evaluating the potential functions and then differentiating. The potential
function and the elastic field for frictionless indentation has been given by Fabrikant (1988).
He derived the relationship between the indenter force P and indentation depth w as
PrH = 2aw. Here sliding of the indenter is considered and a Coulomb friction law is used.
The shear traction is taken as a friction coefficient multiplied by the frictionless contact
pressure. Since only shear traction is considered presently, the solution for frictionless
indentation given by Fabrikant (1988) must be added to the results here to obtain the
complete solution for indentation and sliding.

The potential functions for shear loading can be obtained by integrating the point
force solutions above. The frictionless contact pressure is identical to the isotropic case and
it is given as

1
o'zz(psd):o}:_i”‘"‘“—‘ 0<p<a

2ma_Jga_pt

Using f, and f, as the coefficients of friction in the x and y directions, the complex shear
force T = T, +iT, in the potential functions of equations (1)~(3) is replaced as:
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1
T=:— ""“__"‘podpodd)oa f:fx—i-if;, (7)

and the result is integrated on 0 < p, < a, 0 < ¢, < 2. The potentials become :

H
Filp.8,) = 010 2 R+ TN (0, 6,20~ 05, 6,20 ®
Fip,$2) = ”2) iz TR+ TN 0 (p, 6,2~ (5, 6,75) )
Fy(p, ¢,2) = (fA TN z3¥(p, ¢, 23) — ®(p, §,25)], (10)
where

2r [a 1

l//(pad’az) =J; J ‘—'\/—'2":——;111 [R+Z]po dpo d¢a’ (11)
o a —p,

2 fa 1

@(p,d),z) =J; L '\/;"‘2:‘_:—;;2‘1{.00 dpo d(xba: (12)

and R? = p®+p2—2pp, cos (¢ — ¢,) +2°.
The potential function ¥(p, ¢, z) corresponds to frictionless indentation and it was
evaluated by Fabrikant (1988) as:

+aln [£a) +~/t3a) —p*] — /@ —z(a)). (13)

(o, $,2) = 2n((z) sin~"! Ff

The potential function ®(p, ¢, z) is evaluated in Appendix B as:

®(p,¢,2) =~{(20 +2z%+p?) sin”! £l )+ (2 2o/t Ha)—a } (14)

The quantities £ (@) and ¢ ,(a) are defined as:

21a) =3/ (p+ ) +22 = J(p—a)* +27),
£:(a) = 3/ (p+a)y + 22+ /(p—a)? +27). (15)

The elastic field resulting from the shear traction can be evaluated by performing
appropriate differentiations of the potential functions above. The differentiations of
¥ (p, ¢, z) are tabulated in Appendix A and those for ®{p, ¢, z) are given in Appendix B.
The elastic field is:

C_HP 2 1 lk(a) ; 2z,
o= 3 e e A

k=1

_%ai‘. f],,(a)m}] 41zA {fsn“‘ ”()+f ’“{izsm
S ‘l;—ﬁ"—)\/pz—ffaca)}], 16)
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where the notation

£3@) =3/ (p+a)’ +22 —/(p—a)*+2}), (22)

has been introduced along with a similar interpretation for £ (a).

4. ELASTIC FIELD FOR A SLIDING TILTED INDENTER

Now consider the indentation problem shown in Fig. 1 where the circular flat indenter
is acted upon by moments M, and M, about the x- and y-axis, respectively and the net force
on the indenter is zero. The rotations of the indenter about the x- and y-axis are b, and b,.
The potential function and the elastic field for frictionless indentation is given by Fabrikant
(1988). He derived the relation between the complex moment M = M, +iM, and rotation
b=b,+ib,as M = (4a°/3nH)b.

Sliding of the indenter is now considered with the shear stress in the contact region
taken as a friction coefficient multiplied by the frictionless contact pressure. Again the
solution for shear loading only is given below and the complete solution requires super-
posing the elastic field for frictionless indentation. The frictionless contact pressure is
identical to the isotropic case and is given as
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3 M,psin¢g—M,pcos¢
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Proceeding in a manner identical to the previous case the potentials are now:
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where Im stands for the imaginary part. The potential function ¥(p, ¢, z) is for frictionless
indentation and can be extracted from Fabrikant (1988) as

=7ff ~ib _ X aib : 4/1(“)__%{{?_
¥(p, ¢,2) 2(Mpe Mp €*) {zsin ) 3,

—Ja*—Xa) (1 - 2—‘3-2—#)}. 28)

The potential function ®(p, ¢, z) is evaluated in Appendix D as:

O(p,¢,2) = %(Mp e~ —Mp e®) {;‘;(p2 +422 —4a?) sin~!

(@) +20%a) - ‘(")V —/i@) } (29)

£1(a)
p

The elastic field for shear loading is found by differentiation of the potentials. The
derivatives are given in Appendix C for ¥(p, ¢,2) and Appendix D for ®(p, ¢,z). The
elastic field can be written as:

3Hi 2

=W3’”’2kzl (me—1)
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=3¢%(a)/ 0’ [Ik(a)}] 16 3:3;2 [(ﬁ{] e —fMe " +fM ) (p sin~! —{'—3}“—)‘



Elastic field for circular flat punch 573

——f 3@/ p ~o’f3(a) ~2fM > :) {423(20 —R2a* +¢1@) e —115()

RN xe G0y
_3Hiyy, my - . _1fula) 3
== kgl T [(fM—fM) (zk sin ) /a »l%k(a))

+(fMe"'z¢—fMe"2¢)3%2(2a’-[2az+f§k(a)] az—»’h(a))], 3D

- _ 3Hidgry2 & 5 [y (1+mk)v3] [(fM—fM)( t’lk(a)

24’ S yEm—

_ al 2k(a)m ) + (FM & —fM e~7%) ‘f;‘(a) \/W] , (32

plt3(@) —£3u(a)] [¢5(@) —£4(a))

3Hidgs1172 i 1 [ (FM &% —fiT &% _Ti &%) £i@)y/p’ —¢i(a)
24° = (m—1) Pz[f%k(a) —£1(a)]

gl Ew@ et a@/p? f%k(a)
™ (S‘“ r T @)
+fM e — {6&"&(&1)./ 2 @) — 82, 2a° - &> + (@) a* — ¢ L(a) )}]

> [(fM 626 4 AT &2 AT &%) L@/ —¢h(a)

+
4na’y, p*lt3(a) —£1(a))

2@ _ atn(@/p !%;(a)
pl£33(@) —£33(a)]

Ty =

+fM (sin"
+7M e — {élfg(a),/ 2 t13(a) —8252a° ~ 282 + 3 (a)]/a* — £ 3(a)) }], 33)

3iny2 kH[ ( _;fak(a)
T Snasm—v;)z( DT UMD p

_atala)\/p 2—th(a) ) +(TM S —fM e~2%) i)/ p* —f%k(a):l 4

plt 3@ —£3(a)] PR@— @l 1

3iy,7a 2 (—1)’hLl
8333(%“"}’2)& 1 143

_7a e £ia)y/a’—¢ia) TN e 3(2a —[2a* +£3(a))/ a* —£(a))
plt3(a@) —¢1(a)] 3p

3 v —i$ i __TAT i3 {13(0)\/51 —¢15(a)
8na3[(fMe M e TM & M ) @ —F@]

[(fM e —fMe?+fMe*

y =

+iM 6’3"’ (2a —[22° +¢13(a)] az—ffs(a))]- 3%

SAS 31:4-1



574 M. T. HansoN
5. DISCUSSION

It was noted earlier that the above solutions for shear loading are approximate since
the tangential displacements will not generally align to oppose relative motion. The tan-
gential traction will also produce a normal displacement in the contact region thus altering
the contact pressure. To consider these details further the surface displacements in the
contact region will be examined. For evaluating the surface conditions the following limits
are useful ;

lim#,(a) = min (a,0), lim¢:(a) = max (a, p), (36)

where min (g, p) is the minimum of the two values and max (g, p) the maximum. The above
limits are also valid for £ ,(a) and ¢ ,.(a) since z — 0 implies z, — 0 as well.
Consider first the sliding upright indenter. From eqns (16, 17) one may obtain:

c__an

U = 4a G, p<a, (37)
HP - 2_ 2

w=—a—a(fxcos¢+fysin¢)a———— V;"’, p<a, (38)

where the elastic constants f§, «, G, and G, are defined as (Fabrikant, 1989)

Vs
b= 2nA,,’

2 my _\/AHA33_Al3 (39)

o = =
')’1‘)’212:1 (me— )y A (i+72)

G, =B+yv.H, G,=p—vy:H,

and they are all real quantities. From eqn (37) it is apparent that f is the only complex
quantity on the right hand side and therefore one can write ¥° = u+iv = C(f,+if,) where
C is a real constant. In this case the tangential displacement does align with the direction
of shear traction and the solution is exact in this sense for any transversely isotropic
material. Equation (38) reveals that the normal displacement in the contact region is non-
zero and this will alter the contact pressure. It has a maximum value at p = g and vanishes
for p = 0. In the special case of o = 0 the normal displacement vanishes everywhere on the
surface and there is no interaction. For isotropy a = ((1 —2v)/2(1 —v)) where v is Poisson’s
ratio and thus & = 0 corresponds to an incompressible material. It may now be concluded
that the solution derived here for a sliding upright indenter is an exact solution for materials
with a = 0. For a # 0 the shear stress and tangential displacement are still in alignment but
the solution is not exact since the shear loading will alter the contact pressure.

Now considering the tilted indenter, from eqns (30, 31) the surface displacements in
the loaded region are:

3 3i
W = 2 fOM, —xM,)G) — 155 M(c+9)Ga, p <a, (“0)

w=%{;[—(f'M—fM),/az——p2+(fMe“'2“’—j'z\'lc"z"’)a}ip2
x 2a® — (2a* +p?), /az—pz):l, p<a (4D

It is apparent in this case that the tangential displacements do not align with the shear
traction. This results from the coupling of the second term in eqn (40). In the special case
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G, = 0 the coupling vanishes and the displacements and tractions align. For isotropy this
corresponds to v = 0. The normal displacement is also nonzero except when a vanishes.
For a transversely isotropic material there are five elastic constants and it may be possible
for a and G, to be zero simultaneously, thus yielding an exact solution for a sliding tilted
indenter. An isotropic material can not have v = 0 and v = 4 simultaneously and thus the
solution must be judged as approximate in this case.

6. APPLICATIONS TO FRACTURE MECHANICS

The relevance of one of the solutions derived here to the area of fracture mechanics is
now pointed out. Consider an infinite transversely isotropic body —o0 < z < 0o with a
circular external crack on the plane z = 0. The crack plane is parallel to the planes of isotropy
and the crack occupies the region p > a. Assume that for z = —oc the displacements
U = U, = U, +iv,, are imposed while for z = + co the displacements are ¥ = —u5,, where
i, is a constant. The z = 0 plane is then one of anti-symmetry. The problem is equivalent
to one for the half space z > 0 (Fig. 1) with the boundary conditions

0..(p,$,0) =0, 0<p <0,
7,(p,$,0) =0, a<p< oo,
u(p,$,0)=0, 0<p<a,
limu'(p, ¢,2) = —uty, limw(p, ¢,2) = 0. (42)

Since one may add rigid body displacements without affecting the stress fields, the
addition of the displacement 15, to the half space leads to the boundary conditions

0..(p,9,0) =0, 0<p<o0,
.(p,9,0) =0, a<p<oo,
w(p,9,0) =1, 0<p<a,
lim u*(p, ¢,2) =0, limw(p,¢,z) = 0. 43)

The elastic field to this boundary value problem is given in Section 3 for sliding flat
indentation. Obviously the stress boundary conditions are satisfied and all displacements
vanish for z —» c0. The tangential surface displacement in the region p < a is constant and
given in egn (37) as

uy = 73— G, (44)

Thus if one substitutes fP = (4au’,/nG,) in the solution of Section 3, the stress fields
for this external crack problem are obtained. The surface displacements and stresses for
this problem agree with the result given by Fabrikant (1989). The displacement fields are
obtained by the same substitution in addition to subtracting the rigid body displacement
u,.

A few final comments are in order. It is noted that for the tilted indenter the net normal
force, and thus the net tangential force, are both zero. By itself this solution has little
physical significance. However, adding this solution with the solution for sliding of an
upright indenter allows sliding of a noncentrally loaded flat circular punch to be analyzed.
In addition it was pointed out earlier that the solutions here for shear loading must be
added to the solutions given in Fabrikant (1988) for frictionless indentation to obtain the
complete solution for indentation and sliding. The expressions for the elastic field for the
tilted indenter given there contain two misprints. The eqn (67) for ¢, should be multiplied
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by a factor of 2 (the 2 should be replaced with a 4) while eqn (69) for , should contain a
(—1)¥*+! just to the right of the summation sign.

7. SOLUTIONS FOR ISOTROPY

All of the results in this paper have been derived for a transversely isotropic material.
The solutions are given in terms of the material parameters y,, v,, y3, m,, m,, H, A,, and
Ags which are defined by Fabrikant (1989) or see Hanson (1992a). To obtain the results
for isotropy one must let the elastic parameters take on their equivalent isotropic values.
For isotropy H = [(1 —v?)/nE] and A44 = Ags = (E/2(1+v)) where E is Young’s modulus
and v is Poisson’s ratio. However for isotropy it is also true that y,, y,, y3, m,, m; — 1
(Fabrikant, 1989) and the denominators of the expressions for displacements and stresses
tend to zero. A limiting procedure is thus required to extract the isotropic relations. The
required isotropic limits needed for the shear loading considered here are :

2

kZl s =1y @) = ~f- 2(1 )@ (45)

é:] ﬁy—é ((’In:rf{c))?% flz) = 2(1 +V2){1 (i) vJ)r zf ’(2)’ 7
ﬁ kZ] (—D**'fz) = —2/(2), (48)
3 E0 e = - @)

where f'(z) denotes the derivative of f(z) with respect to z.

8. NUMERICAL RESULTS

In this section some numerical results are given to illustrate the effects of transverse
isotropy and shear loading on the internal stress fields. The only previous results given in
the literature are those provided by Sneddon (1966) who derived closed form expressions
for the elastic field for flat frictionless indentation of an isotropic half space and gave
numerical values for subsurface stresses in tabular form. In the present numerical study the
elastic fields for frictionless indentation obtained by Fabrikant (1988) were superposed with
the results for shear loading presently derived.

The first step was to compare present calculations with Sneddon’s results. It was found
that in some cases the present numbers were in good agreement while in other cases there
were significant discrepancies. To determine the cause of the disagreement, the analytical
derivations in Sneddon’s paper were repeated and several misprints in his formulas were
found. In particular, his eqn (3) for the stress o, contains two misprints and should read as
follows

40u ¢ au? ¢ ( , Ata )
ae__l+2y naﬂ_p(l+2ﬂ)a o= U — (30)

Also his eqn (16) for J4 should be



Elastic field for circular fiat punch 577
J5 = rR ¥ sin (3¢ —0). (51)

Using the corrected forms of Sneddon’s expressions led to numerical results which
were in perfect agreement with the current numerical results. It was thus concluded that
some error occurred in performing the numerical evaluations in Sneddon’s tables and some
of these numerical results should be disregarded.

The remainder of this section presents new numerical results for the subsurface stress
fields resulting from flat indentation with sliding. First the axisymmetric frictionless case is
examined and Fig. 2 plots contours of the maximum shear stress for an isotropic material
with v = 0.3. In all stress plots the stress is nondimensionlized by dividing by the average
contact stress g,, = P/(na®). Figure 3 displays the analogous result for Cadmium which is a
transversely isotropic material. The elastic constants for Cadmium are givenas 4,; = 109.21
GPa, 4,5 = 37.55 GPa, A3, = 46.03 GPa, A4, = 15.63 GPa and 4 = 34.72 GPa which
were obtained from the paper by Dahan and Zarka (1977), and are close to similar values
given by Zureick and Eubanks (1988). The maximum shear stress was chosen to plot since
it is a quantity which can be related to the yielding behavior for ductile materials and the
von-Mises yield criterion may not be applicable to nonisotropic materials as discussed by
Hill (1950). It was found that the hoop stress was almost always the middle principal stress
and thus the maximum shear stress was contained in the axisymmetric planes. From the
results it is apparent that Figs 2 and 3 have similar features. This was not true for the
Hertzian indentation studied by Dahan and Zarka (1977) whose results showed that the
contours of Mises stress for Cadmium was significantly different than for isotropy. Since
Hertzian contact produces no contact stress singularity, it can be concluded that the stress
singularity present for the flat indenter at the edge of contact is the dominant factor in
producing the maximum shear stress and it overwhelms any effect due to transverse isotropy.
Presently the transverse isotropy gives only a shift in the contour level magnitude as
compared to the isotropic results. The same comments apply to Figs 4 and 5 which plot

Tmax i the x—z plane when sliding in the x direction is included using a friction coefficient
of £, =0.3.

x/a

z/a

0.75+

1.5

Fig. 2. Contours of 1,,,/0,, in the y = 0 plane for an isotropic material with v = 0.3, f, = f, = 0.
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z/a

0.75 - AN /

1.5

Fig. 3. Contours of 1,,,/0,, in the y = 0 plane for Cadmium, f, = f, = 0.

z/a

0.754

1.5

Fig. 4. Contours of 1,,,,/0,, in the y = 0 plane for an isotropic material withv = 0.3, f, = 0.3, 1, = 0.
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0.0 x/a 1.5

0.75 4

1.5

Fig. 5. Contours of t,,,/d,, in the y = 0 plane for Cadmium, f, = 0.3, f, = 0.

In the remaining results attention is focused on the subsurface hoop stress which is
pertinent to the investigation of subsurface cracking resulting from indentation of brittle
materials. Other stress components can be investigated in a similar manner and will not be
discussed here. From Figs 2-5 it might be assumed that transverse isotropy has only a small
effect. However, the following figures indicate that this is not true. Figure 6 displays the
subsurface hoop stress for flat frictionless indentation of an isotropic material. Under the
indenter it is compression, tending to infinity at the edge of contact, while it becomes tensile
at a larger depth with a maximum value of 0.005 at x/a = 0.0, z/a = 3.0. Similar results for
Cadmium are presented in Fig. 7. Now it is apparent that the tensile stress region shifts off
from the axis of contact and forms a doughnut shaped region encircling the indenter. The
maximum value is now 0.01 at x/a = 2.286, z/a = 1.2 which is double the isotropic result.
Results for a third transversely isotropic ceramic material, BaTiO;, are shown in Fig. 8. In
this case the maximum is back below the indenter with a value of 0.063 at x/a = 0.0,
zfa = 1.71 which is much larger and closer to the surface than the isotropic result. As
indicated in Fig. 9, the compressive hoop stress is also significantly altered by transverse
isotropy. Along the z axis the hoop stresses reach a value of —0.6 at the surface which is
50% larger than the isotropic value of —0.4,

The final two figures display the effect of shear loading and transverse isotropy on
subsurface hoop stresses. Using a friction coefficient of 0.5 for sliding in the x direction,
Fig. 10 presents the results for isotropy while Fig. 11 is for Cadmium. Comparing Fig. 10
to Fig. 6 it is obvious that shear loading creates some asymmetry in the subsurface stresses
and gives a slightly larger tensile stress magnitude of 0.0056. Fig. 11 for Cadmium illustrates
how transverse isotropy greatly enhances the asymmetry caused by shear loading. Com-
paring to Fig. 7 it can be seen that the tensile stress ahead of the shear loading is greatly
increased to a value of 0.0167 while it is reduced behind the loading to the 0.0069. The near
surface compressive stresses appear to be less affected by shear loading.
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Fig. 6. Contours of g,,/a,, in the y = 0 plane for an isotropic material with v = 0.3, f, = f, = 0.

9. CONCLUSIONS

The present research has provided closed form solutions to the elastic field resulting
from sliding of a flat or inclined cylindrical indenter. The solutions are generally approxi-
mate since the alteration of the contact pressure resulting from shear loading was neglected
and also the shear stresses do not completely align with the direction of relative displace-
ment. However, it was shown that under certain conditions this interaction vanishes (x = 0)
and shear loading produces no normal displacement on the surface. Also for the flat indenter
the displacements do align with the shear traction for all elastic constants and thus under
these conditions the present solution is exact.

Even for cases when « # 0, the interaction is not a dominant factor. For example from
eqn (38) the maximum normal displacement at the edge of contact is w = HPaf,/a when
shear loading is in the x direction whereas the normal displacement resulting from normal
loading is PHn/(2a). The ratio of maximum normal displacement caused by sliding to that
caused by indentation is 2af,/n. For an isotropic material this becomes (1 —2v)f,/[z(1 —v)].
If v = 0.3 and f, = 0.3 this ratio becomes 0.05 and thus the normal displacement caused by
shear loading is only 5% of the direct indentation displacement in the worst case. This
point can also be viewed by considering the two-dimensional analogue of this problem. For
sliding in the x direction the contact pressure for the flat indenter along the center shouid
have a form similar to the two-dimensional distribution. The plane strain contact stress
including the interaction is given as
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Fig. 7. Contours of s,,/0,, in the y = 0 plane for Cadmium, f, = f, = 0.

a-x\ P 1 . k—1
O, = — (cos () <a+x>> ﬂm, o —7—Itan (fx+l>’ (52)

where f is the friction coeffficient and x¥ = 3 —4v. The effect of friction is to alter the order
of the stress singularity at the edges of contact. For f = 0, & = 0 and the frictionless result
is obtained. If the frictional effect in brackets is calculated for f = v = 0.3, then o = 0.0272
and a simple calculation reveals that the true stress and the frictionless stress differ by less
than 3% in the region —0.52 < x < 0.5a. The difference at x = 0.93ais only 9% . Therefore
the only significant deviation occurs at the extreme edges of contact. Since the net force is
identical in each case, neglecting the interaction will only give any significant error at the
edge of contact. Away from the edge and in the subsurface region the frictionless results
should be a good approximation due to St Venant’s principle. A comparison of the surface
shear stress will lead to the same conclusion since it is just a constant multiple of the
surface normal stress. Therefore the present closed form solutions provide a very good
representation for the elastic field in a manner amenable to simple calculations.

The numerical results were illustrated by plotting subsurface stress fields. It was found
that the maximum shear stress occurred at the edge of contact, increasing in an unbounded
manner. The maximum shear stress distribution was relatively unaffected by transverse
isotropy. One can thus conclude that the stress singularity at the contact edge dominates
the stress field distribution in the region close to the contact. On the other hand, it was also
shown that the subsurface hoop stress distribution was significantly altered by material
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Fig. 8. Contours of g,,/0,, in the y = 0 plane for BaTiO,, f, =, =0.
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Fig. 9. Comparison of the hoop stress along the z axis for an isotropic and a tranversely 1sotropic
material, frictionless indentation case.



Elastic field for circular flat punch 583

x/a

0.0

1.5 1

z/a

3.0 4

4.5

6.0

Fig. 10. Contours of g,,/6,, in the y = 0 plane for an isotropic material with v = 0.3, £, = 0.5, f, = 0.
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Fig. 11. Contours of g,,/5,, in the y = 0 plane for Cadmium, £, =03, f, = 0.
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anisotropy. Transverse isotropy increased the maximum value and in some instances also
shifted its location to a point off the axis of contact. Finally, shear loading for isotropy
gave a small alteration in the hoop stress while the effect of shear for transverse isotropy
was more pronounced.
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APPENDIX A

The derivatives of the function y/(p, ¢, z) defined in eqns (11, 13) are given. Some can be extracted from the
solution of Fabrikant (1988) while the others were derived here. The results are :

2 40,9, = 2msin™! "f,“), )
A(p,$,2) = 2me* {g - ——V“z‘p’(“)} A2

i 2_¢2 2 2
T R N ) *y

02 _ a’*—¢%a)
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where ¢,(a) and ¢,(a) are defined in eqns (24).

APPENDIX B

Here the function ®(p, ¢, z) defined in egn (12) is evaluated. First differentiation of eqn (12) with respect to
z yields

@ * fe I 1 a
5;(»(”’ ¢’ Z) = ZJ:) j; ﬁ ﬁpn dpa d¢o = Zg;'ﬁ(ﬂ, ¢;2)' (Bl)

Substituting from eqn (A1) and then integrating with respect to z results in:
n 2 P UTIRRY 21 () NN D 2 2
O(p,6.2) = 51 Qa*+22+pY sin™' < E 4~ Qa4 CH@) /Tl —a (. ®2)

Since the integral was evaluated as indefinite, an arbitrary function of the variables p, ¢ and a must be added.
However, it can be shown by considering the behaviour at z = oo that this function is zero.

To evaluate the elastic field for shear loading, the relationship in eqn (B1) can be used along with the
derivatives

AD(p, $,7) = 2x {sm“‘ @) | 2y “z”’?(“)} (83)
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APPENDIX C

The derivatives of the potential function ¥(p, ¢, ) defined in eqns (26, 28) are given as:
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The derivative A%(p, ¢, 2} is in a more complicated form and thus it is not given explicitly here. Only the
combination A’(z¢(p, ¢,2) —®(p, ¢, 2)) is needed and this is given in Appendix D.

APPENDIX D

The function ®(p, ¢, 2) defined in eqn (27) is evaluated presently. Differentiation of eqn (27) with respect to
2z yields
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‘D(p, ¢,2)=zim {Mf f \/2__7 R.o., dp, dqx} =z w(p,é ). hn
a’~p,

Substituting from eqn (C1) and then integrating with respect to z results in

O(p,d,2) = %’(Mp e — Mpe®) {é(p’ +4z° —4a%) sin™! {%
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Since the integral was evaluated as indefinite, an arbitrary function of the variables p, ¢ and a must be added.
However, it can be shown by considering the behavior at z = oo that this function is zero.

To evaluate the elastic field for shear loading, the relationship in egn (D1) can be used along with the
derivatives
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The derivative A’®{p, ¢, z) is in 2 more complicated form and it is not explicitly given here. It was pointed
out in Appendix C that A% (p,d,z) and A*®(p,¢,z) are not individually needed, only the combination
A2y (p, §,2) —D(p, $, 2)) is required. This combination has the simpler form given below as:
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